科研學術

您當前的位置: 首頁 > 科研學術 > 學術預告 > 學術報告 > 正文

“數學與金融”講壇系列講座 A beyond multiple robust approach for missing response problem

發布時間:2021-03-29     來源:王漢超    點擊數:

 

報告題目:A beyond multiple robust approach for missing response problem

主 講 人:王啟華教授(中國科學院數學與系統科學研究院)

報告時間:2021330日上午11:00-12:00

報告地點:知新樓B1248

 

報告摘要:

Imputation and the inverse probability weighting are two commonly used approaches in missing data analysis. Parametric versions of them are not robust due to model misspecification of some unknown functions. Nonparametric ones are robust but are impractical when the number of covariates is large due to the problem of ``curse of dimension''. A beyond multiple robust method is proposed in this paper. This method balances the parametric and nonparametric methods by using some model information contained in the outcome regression function and the selection probability function, and hence alleviates the model misspecification problem and ``curse of dimension" problem simultaneously. To illustrate the proposed method, we focus on the estimating problem of response mean in the presence of missing responses. A beyond multiple robust estimator of the response mean is defined, which is proved to be consistent and asymptotically normal as long as one of the true models for the outcome regression or selection probability functions can be some function of its assumed models, without the requirement that one of the true models is correctly specified. Also, it is shown that the asymptotic variance of the proposed estimator is equal to the semiparametric efficiency bound established by Hahn (1998, Econometrica, pp 315-331) when both the selection probability function and the outcome regression function are the functions of their assumed models, respectively. The finite sample properties of the proposed estimator are evaluated by simulation studies and the proposed method is illustrated by a real data analysis.

 

歡迎各位老師同學積極參加!

 

 

版權所有:山東大學中泰證券金融研究院
   地址:中國山東省濟南市山大南路27號   郵編:250100    電話:0531-88364100   院長信箱: sxyuanzhang@sdu.edu.cn

彩88官网--欢迎您访问!